Приближение функций комплексного переменного - definitie. Wat is Приближение функций комплексного переменного
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Приближение функций комплексного переменного - definitie

ФУНКЦИЯ, ОБЛАСТИ ОПРЕДЕЛЕНИЯ И ЗНАЧЕНИЙ КОТОРОЙ - ПОДМНОЖЕСТВА КОМПЛЕКСНЫХ ЧИСЕЛ
Функция комплексной переменной; Функция комплексного переменного; Функции комплексного переменного

Приближение функций комплексного переменного      

раздел комплексного анализа, изучающий вопросы приближённого представления (аппроксимации) функций комплексного переменного посредством аналитических функций (См. Аналитические функции) специальных классов. Центральная проблематика относится к приближению функций полиномами и рациональными функциями. Основными являются задачи о возможности приближения, скорости приближения и аппроксимационных свойствах различных способов представления функций (интерполяционных последовательностей и рядов, рядов по ортогональным полиномам и полиномам Фабера, разложений в непрерывные дроби и т.п.). Теория приближений тесно связана с др. разделами комплексного анализа (теорией конформных отображений, интегральными представлениями, теорией потенциала и др.); многие теоремы, формулируемые в терминах теории приближений, являются, по существу, глубокими результатами о свойствах аналитических функций и природе аналитичности.

Одним из первых результатов о полиномиальной аппроксимации является теорема Рунге, согласно которой любая функция, голоморфная в односвязной области плоскости комплексного переменного z, может быть равномерно аппроксимирована на компактных подмножествах (см. Компактность) этой области посредством полиномов от z. Общая задача о возможности равномерного приближения полиномами ставится так: для каких компактов К в комплексной плоскости любая функция f, непрерывная на К и голоморфная на множестве внутренних точек К, допускает равномерную аппроксимацию на К (с любой степенью точности) посредством полиномов от z. Необходимым и достаточным условием возможности такой аппроксимации является связность дополнения компакта К. Эта теорема для компактов без внутренних точек была доказана М. А. Лаврентьевым (1934), для замкнутых областей - М. В. Келдышем (1945) и в общем случае - С. Н. Мергеляном (1951).

Пусть Еп = En (f, K) - наилучшее приближение функции f на компакте К посредством полиномов от z степени не выше n (в равномерной метрике). Если К - компакт со связным дополнением и функция f голоморфна на К, то последовательность {Еп} стремится к нулю быстрее некоторой геометрической прогрессии: En < qn, 0 < q = q < 1 (n > N). Если f непрерывна на К и голоморфна во внутренних точках К, то скорость её полиномиальной аппроксимации зависит как от свойств f на границе К (модуль непрерывности, дифференцируемость), так и от геометрических свойств границы К.

Другие направления исследований - равномерные и наилучшие приближения рациональными функциями, приближения целыми функциями, весовые приближения полиномами, приближения полиномами и рациональными функциями в интегральных метриках. Большое внимание уделяется проблематике, связанной с приближением функций нескольких комплексных переменных.

Лит.: Уолш Д.-Л., Интерполяция и аппроксимация рациональными функциями в комплексной области, пер. с англ., М,, 1961; Маркушевич А. И., Теория аналитических функций, т. 2, М., 1968; Смирнов В. И.. Лебедев Н. А., Конструктивная теория функций комплексного переменного, М. - Л., 1964; Мергелян С. Н., Приближения функций комплексного переменного. в кн.: Математика в СССР за сорок лет. 1917-1957, т. 1, М., 1959, с. 383-98; Гончар А. А., Мергелян С. Н., Теория приближений функций комплексного переменного, в кн.: История отечественной математики, т. 4, кн. 1, К,, 1970, с. 112-78.

А. А. Гончар.

Комплексная функция         
Комплексная функция — основной объект изучения теории функций комплексной переменной, комплекснозначная функция комплексного аргумента: f\colon\Complex \to \Complex.
Приближение Фоккера — Планка         
Фоккера-Планка приближение
Фо́ккера-Пла́нка приближе́ние — описание физической кинетики частиц в газе в случае, когда распределение частиц по скоростям имеет почти изотропный характер. В основном применяется для описания электронов в газах при воздействии электрического поля.

Wikipedia

Комплексная функция

Комплексная функция — основной объект изучения теории функций комплексной переменной, комплекснозначная функция комплексного аргумента: f : C C {\displaystyle f\colon \mathbb {C} \to \mathbb {C} } .

Как и комплекснозначная функция вещественной переменной может быть представлена в виде:

f ( z ) = u ( z ) + i v ( z ) {\displaystyle f(z)=u(z)+iv(z)} ,

где u ( z ) {\displaystyle u(z)} и v ( z ) {\displaystyle v(z)} — вещественнозначные функции комплексного аргумента, называемые соответственно вещественной и мнимой частью функции f ( z ) {\displaystyle f(z)} . В отличие от вещественных функций, между компонентами разложения имеется более глубокая связь, например, для того, чтобы функция f ( z ) {\displaystyle f(z)} была дифференцируема в смысле функции комплексной переменной, должны выполняться условия Коши — Римана:

u x = v y {\displaystyle {\frac {\partial u}{\partial x}}={\frac {\partial v}{\partial y}}} ;
u y = v x {\displaystyle {\frac {\partial u}{\partial y}}=-{\frac {\partial v}{\partial x}}} .

Примерами аналитических функций комплексной переменной являются: степенная функция, экспонента, гамма-функция, дзета-функция Римана, хребтовая функция и многие другие, а также обратные им функции и любые их комбинации. Однако действительная часть комплексного числа R e z {\displaystyle \mathrm {Re} \,z} , мнимая часть I m z {\displaystyle \mathrm {Im} \,z} , комплексное сопряжение z ¯ {\displaystyle {\bar {z}}} , модуль r = | z | {\displaystyle r=|z|} и аргумент φ ( z ) {\displaystyle \varphi (z)} аналитическими функциями комплексного переменного не являются, так как не удовлетворяют условиям Коши — Римана.